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ABSTRACT 
In recent years, researchers in a variety of fields have 
increasingly recognized the importance of (a) effect 
size statistics to communicate the magnitudes of 
treatment effects, and (b) confidence intervals to 
communicate the extent of uncertainty in parameter 
estimates due to sampling error. Although confidence 
intervals are frequently used for simple statistics such 
as means and correlation coefficients, the sampling 
distributions of effect sizes present greater 
challenges for constructing accurate interval 
estimates. Steiger and Fouladi (1992, 1997) 
described an interval inversion approach that 
provides a method for constructing confidence 
intervals for a variety of complex statistics, including 
sample effect sizes. By transforming the sample 
standardized mean difference effect size (d) into a 
noncentrality parameter, the noncentral t distribution 
is used to identify values of noncentrality for which 
the sample effect size is expected to occur (for 
example) 2.5% of the time and 97.5% of the time. 
These values of noncentrality are then transformed to 
provide the endpoints of a 95% confidence band 
around the sample value of d. This paper presents a 
SAS macro that calculates confidence intervals for 
standardized mean differences using the interval 
inversion approach. Inputs to the macro include the 
observed sample effect size and the sample sizes for 
the two groups. The macro computes and reports 
80%, 90% and 95% confidence intervals around the 
sample effect size. The paper provides a 
demonstration of the SAS/IML code, sample output, 
and examples of applications in simulation studies. 
 
INTRODUCTION 
As with many aspects of research, there is increasing 
attention being levied on not only the impact of 
research results, but on proper and adequate conduct 
of that research as well as the need to provide 
comprehensive and sufficient reporting of appropriate 
statistics.  One of these statistics in particular, effect 
size, has been receiving increasing recognition as a 
critical element in research applications that should 
be reported in the literature (Nix & Barnette, 1998). 
The new edition of the American Psychological 
Association (APA)’s style manual for publication 
(APA, 2001) cites the failure to report effect sizes, as 
well as other research issues, as defects in reporting 
research.  However, Thompson (1998) has noted that 
the ‘encouragement’ of the APA has not seemed to 
induce sufficient leverage for researchers to 
consistently report this informative statistic.  As a 
result, some professional journals have made it a 

requirement of authors to supply this information 
before consideration for publication.   Unfortunately, 
recent research has indicated that while many 
journals technically require this information, few are 
enforcing their own requirements (McMillan, Snyder & 
Lewis, 2002).   

The report by Wilkinson and the APA Task Force 
on Statistical Inference (1999) not only addresses the 
need for effect size reporting but also stresses the 
obligation of researchers to provide estimates for 
confidence intervals for all principal outcomes, 
including, but not limited to, effect size information. 
Analytical experts are increasingly investigating the 
use of confidence intervals for various parameter 
estimations in lieu of traditional point estimates (Nix & 
Barnette, 1998; Grissom & Kim, 2001).  While the use 
of intervals around effect sizes has been the topic of 
various theoretical discussions, empirical 
investigation has just begun under limited conditions. 

 
INTERVAL ESTIMATES FOR EFFECT SIZES 
Research into robust and reliable effect size 
computation is ongoing and currently there are a 
variety of effect size indices available to researchers 
such as Cohen’s d, Hedge’s g and the trimmed d 
(Hogarty & Kromrey, 1999).  For purposes of 
simplicity at this stage of the research, only Cohen’s 
d is addressed in this paper.  Cohen’s d is defined as 
the difference in means between groups divided by 
the pooled standard deviation and is given by: 
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where 2, andi i iX S n  are the sample mean, variance 
and size of group i. 

A variety of methods for constructing confidence 
bands around the sample value of Cohen’s d have 
been suggested, including use of the normal 
distribution (relying on the asymptotic normality of the 
sampling distribution of d) and the application of the 
hyperbolic sine transformation to accelerate the 
approach to normality (Hedges & Olkin, 1985).  
Additionally, confidence intervals for effect sizes may 
be constructed using bootstrap approaches, 
techniques commonly recognized as efficient 
methods for providing estimates for, among other 
things, confidence intervals and standard errors 
(Efron & Gong, 1983; Efron & Tibshirani, 1986; Stine, 
1990).  However, comparisons of approaches to 
interval estimation for standardized mean differences 
suggest that one of the most promising methods is 
that of interval inversion.   
 



 

THE INTERVAL INVERSION APPROACH 
The interval inversion approach to confidence interval 
estimation was proposed by Steiger and Fouladi 
(1992, 1997).  This method has shown promise in 
similar applications of confidence interval estimation 
for relatively complicated parameters (Kromrey & 
Hess, 2001; Hess & Kromrey, 2002).  This method 
uses the sampling distribution of d to estimate the 
values of the population effect size δ  for which the 
sample effect size, obtained from sample sizes of n1 
and n2, would be expected (for example) 2.5% of the 
time and 97.5% of the time. Because analytical 
formulae for obtaining these values are not available, 
numerical methods are used (see, for example, 
Press, Teukolsky, Vetterling & Flannery, 1992). 

An illustration of this method of interval 
estimation is provided in Figures 1 and 2. Assume 
that a research analysis yields a sample effect size, 
d, of 0.48, from a study of two independent groups of 
observations with n1 = n2 = 20. The sampling 
distribution of d is graphed in Figure 1 for three 
potential values of the population effect size δ . If the 
population effect size is .60, then nearly all of the 
sampling distribution is greater than the observed 
effect size of .48; if the population value is .40, then 
approximately 40% of the sampling distribution is 
greater than the observed value of d; and if the 
population effect size is .20, then only a small portion 
of the sampling distribution is greater than the 
observed value. 

 
Figure 1 
Probability Densities of d Under Three Values of δ  
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Given the obtained value of d from a sample, one 

can compute the proportion of each sampling 
distribution that is greater than the observed value. 
Extending this thinking to an infinite number of 
potential values of δ  (rather than the three illustrated 
in Figure 1), one can plot the proportion of the 
sampling distribution of d that is greater than the 
observed value of d, Pr(d > dobs), as a function of the 
population parameter. Such a graph is provided in 
Figure 2. Using the interval inversion approach, the 

endpoints of the 95% confidence interval are the 
values of δ  for which Pr(d > dobs) = .025, and Pr(d > 
dobs) = .975 for the lower and upper limits, 
respectively. 
 
Figure 2 
Probability of d > Observed d as a Function of δ  
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In practice, programming the interval inversion 

method is simplified when the sampling distribution of 
a function d is used, rather than that of d itself. For 
example,  
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is distributed as Student’s t, with df = n1 + n2 – 2, and 
noncentrality parameter, λ , where 

λ = 1 2
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Using this function of the standardized mean 

difference, the interval inversion method evaluates 
the noncentral t distribution and identifies values of 
noncentrality for which the observed sample 
noncentrality is expected to occur (for example) 2.5% 
of the time and 97.5% of the time. These values of 
noncentrality are then transformed to provide the 
endpoints of a 95% confidence band around the 
sample value of d. Such an approach may be easily 
implemented with SAS. 

 
MACRO EFFECT_CI 
A SAS/IML macro was designed to compute confidence 
intervals for Cohen’s d, using the interval inversion 
method. The macro was developed to provide 
researchers with an easily accessible tool for 
constructing confidence intervals around sample 
effect sizes. Inputs to the macro include the  name of 
the data set containing the observations, the obtained 
effect size and the sample sizes for the two groups 
being compared. 



 

The effect sizes and associated samples sizes, 
n1 and n2, are read into column vectors for use within 
the macro.  With these summary statistics organized 
into the three vectors, confidence intervals may be 
obtained for multiple sample effect sizes with a single 
call to the macro. 

Within PROC IML, the subroutine FIND_DELTA 
uses the interval inversion method to compute a 
specific endpoint of a confidence band for a given 
Type I error rate.  For example, the subroutine is 
called twice to compute the endpoints for a 95% 
confidence band, once for the .025 and again for the 
.975 percentile point. In this macro, the subroutine is 
called six times to compute the two endpoints for 
each of the Type I error rates under consideration: 
80%, 90% and 95% for each observation input. 

Using the sample sizes for a given observation, 
the degrees of freedom (df) are computed.  The 
values of the obtained effect size and sample sizes 
are then used to compute the noncentrality parameter 
(nc).  Once the degrees of freedom and noncentrality 
parameter are computed, the endpoint of the 
confidence interval is found using a 3-step process.  
First, a value for the endpoint is found that is slightly 
too large through the use of a do loop that increments 
the value of the hypothetical population effect size by 
.001 each time until the probability from student’s t 
distribution exceeds the target percentile. A similar 
process is used to obtain an endpoint value that is 
slightly too small.  Once these two boundary values 
are found, the macro uses the method of bisection   
to successively halve the distance between the      
two values until that difference is sufficiently small    
(1 x 10-11).  Once this convergence is reached, the 
subroutine returns the target value of δ that is the 
endpoint of the confidence interval. 

The provided version of the macro calls this 
subroutine six times to provide the six endpoints of 
interest.  Once all six iterations have been 
accomplished, the obtained sample effect size and 
the endpoints of the three confidence intervals at the 
various alpha levels are printed using the FILE PRINT 
statement.   
 
* +-----------------------------------------+ 
   Input to the macro: 

data = name of data set 
effect_size = obtained sample 
value of Cohen d 
n1 = sample size of group one 
n2 = sample size of group two 

   Output is printed table of confidence 
intervals 

* +----------------------------------------+; 
 
%macro EFFECT_CI(data, effect_size, n1, n2); 
 
proc iml; 
 
start find_delta(obs_stat, n1, n2, pctl, 

delta_t); 

 
  df = n1 + n2 - 2; 
 

* Step 1: Find value of delta that is a 
little too high; 

  OK = 0; 
  delta_t = 0;  

* start loop with pop effect size = 0; 
  do until (OK = 1); 
     nc = delta_t # sqrt(n1#n2/(n1+n2)); 
     cumprob = PROBT(obs_stat,df,nc); 
     if cumprob<pctl then OK = 1; 
     if cumprob>pctl then  
      delta_t = delta_t + .001; 
  end; 
  high = delta_t; 
 
* Step 2: Find value of delta that is a 

little too low; 
  OK = 0; 
  delta_t = 0; 
* start loop with pop effect size = 0; 

  do until (OK = 1); 
     nc = delta_t # sqrt(n1#n2/(n1+n2)); 
     cumprob = PROBT(obs_stat,df,nc); 
     if cumprob>pctl then OK = 1; 
     if cumprob<pctl then  
      delta_t = delta_t - .001; 
  end; 
  low = delta_t; 
 
  * Step 3: Successively halve the interval 

between low and high to obtain 
final value of percentile; 

  change = 1; 
  small = .00000000001; 
  do until (change<small); 
    half = (high + low)/2; 
    nc = half # sqrt(n1#n2/(n1+n2)); 
    cum_h = PROBT(obs_stat,df,nc); 
    if cum_h < pctl then high =  half;  

* still too high; 
    if cum_h > pctl then low  = half;   

* still too low; 
    change = abs(high - low); 
    Delta_t = (high + low)/2; 
  end; 
finish; 
 
use &data; 
 read all var{&effect_size} into effect_vec; 
 read all var{&n1} into n1; 
 read all var{&n2} into n2; 
 k = nrow(effect_vec); 
 
 file print; 
 put @1 'Confidence Intervals Around Sample 



 

        Effect Sizes' // 
     @16 '95% CI' @36 '90% CI' @56 '80% CI' / 
     @2 'Effect' @10 '-------------------'  

@30 '-------------------'  
@50 '-------------------' / 

     @3 'Size' @12 'Lower     Upper'  
@32 'Lower     Upper'  
@52 'Lower     Upper' / 
@1 '--------' @10 '--------- ---------' 
@30 '--------- ---------'  
@50 '--------- ---------'; 

 
do i = 1 to k; 
 
  obs_stat = effect_vec[i,1] # 

sqrt(n1[i,1]#n2[i,1]/(n1[i,1] + 
n2[i,1])); 

 
  run find_delta(obs_stat, n1[i,1], n2[i,1],  

.025, delta025); 
  run find_delta(obs_stat, n1[i,1], n2[i,1],  

.975, delta975); 
  run find_delta(obs_stat, n1[i,1], n2[i,1],  

.05, delta05); 
  run find_delta(obs_stat, n1[i,1], n2[i,1],  

.95, delta95); 
  run find_delta(obs_stat, n1[i,1], n2[i,1],  

.10, delta10); 
  run find_delta(obs_stat, n1[i,1], n2[i,1],  

.90, delta90); 
 
  print_effect = effect_vec[i,1]; 
  file print; 
  put   @1 print_effect 8.3 @10 delta975 8.3 

   @20 delta025 8.3 @30 delta95 8.3  
   @40 delta05 8.3 @50 delta90 8.3  
   @60 delta10 8.3; 

end; 
quit; 
 
%mend EFFECT_CI; 
 
The output for the macro is formatted in such a way 
as to provide a single line for each observation/study 
input into the macro, with lower and upper endpoints 
given at three Type I error rates.   

With relatively minor changes to the macro, 
essentially the percentiles specified as arguments to 
the subroutine FIND_DELTA, one can compute 
intervals for any desired level of Type I error rate.  
Additionally, the macro could be further modified to 
compute or print other statistics of interest, including 
sample sizes and widths of confidence intervals.  
  
INVOKING THE MACRO 
The easiest way in which the macro EFFECT_CI may 
be used is to simply create a SAS dataset that inputs 
the sample effect size(s) and sample sizes. The 

macro is then called, using as arguments the name of 
the dataset, the name of the variable that contains 
the effect sizes and the names of the two variables 
that contain the sample sizes for each effect size. For 
example, the following code reads three sample 
effect sizes and their corresponding sample sizes. 
The data are read into a SAS dataset called ONE and 
are referenced by the variable names sample_d, 
treatment_n and control_n. The call to the macro 
EFFECT_CI requests the estimation of confidence 
intervals for each of the effect sizes. 
 
data one; 

input sample_d treatment_n control_n; 
cards; 
 
 0.246 25 30 
 0.572 80 80 
-0.885 25 15 
; 
%EFFECT_CI (one,sample_d,treatment_n,control_n) 
run; 
 
OUTPUT FROM MACRO EFFECT_CI 
Table 1 provides an example of the output provided 
by Macro EFFECT_CI.  The output includes each 
sample effect size provided as input to the macro as 
well as confidence bounds for three levels of Type 
error:  alpha = 0.05, 0.10, and 0.20. 
 
Table 1.  Example of output from Macro EFFECT_CI 
 

Confidence Intervals Around Sample Effect Sizes 
 

 95% CI 90% CI 80% CI 
Effect 
size Lower Upper Lower Upper Lower Upper 

0.246 -0.288 0.778 -0.202 0.692 0.103 0.593 

0.572 0.255 0.887 0.306 0.836 0.364 0.778 

-0.885 -1.550 -0.210 -1.442 -0.317 -1.317 -0.441 

 
In this example, the lower and upper endpoints of the 
95%, 90% and 80% confidence intervals are provided 
for the three different observations.  The 95% 
confidence band for the study with the rather large 
negative effect size of -0.8850 extends from -1.5498 
to -0.2096.   
 
EMPIRICAL STUDIES OF INTERVALS 
Simulation studies on confidence interval construction 
(Hess & Kromrey, 2003; Hess & Kromrey, 2002) 
under conditions where both populations had equal 
variances suggested that the interval inversion 
approach provided accurate confidence intervals 
around the sample effect size across a broad range 
of sample sizes, population distribution shapes, and 
values of δ .  However, for conditions with 
heterogeneous variances (especially when paired 
with unequal sample sizes), no approach to interval 
estimation provided accurate confidence bands. For 



 

such conditions, d is a biased estimate of δ  (see, for 
example, Kraemer & Andrews, 1982; Wilcox & 
Muska, 1999). Such bias in a statistical point estimate 
means that the confidence interval may be the 
appropriate width to obtain the nominal level of 
confidence, but the interval is being constructed in 
the wrong location. A recent simulation study 
(Hogarty & Kromrey, 2001) confirmed the substantial 
bias in Cohen’s d as a point estimator when 
populations are heterogeneous in variance. 

For such conditions, alternative non-parametric 
indices appear promising. For example, Hogarty and 
Kromrey (2001) found that ordinal indices of effect 
size (Cliff’s d, Cliff, 1993, 1996; or the closely related 
Â  proposed by Vargha & Delaney, 2000) provided 
relatively unbiased point estimates of the 
corresponding parameters under a variety of 
distributional conditions. 
 

CONCLUSIONS 
The macro EFFECT_CI provides accurate confidence 
intervals for standardized mean differences obtained 
under a variety of data conditions. However, under 
extremely large sample sizes (total N of several 
thousand) or large sample effect sizes (d of 5.00 or 
larger), the SAS function PROBT is unable to 
evaluate the cumulative distribution function. The 
limits of the PROBT function depend upon the 
combination of sample effect size, degrees of 
freedom for the t distribution and noncentrality 
parameter. If such conditions are reached during the 
computation of the confidence intervals, the macro 
will stop executing and return an error message that 
an invalid argument has been sent to the PROBT 
function. For data structures with very large samples 
or very large effect sizes, alternative methods of 
confidence interval construction are recommended. 
For example, Hedges and Olkin (1985) suggested 
confidence intervals constructed using the normal 
distribution and the standard error of the sample 
effect size 
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With larger sample sizes, such a normal 

approximation to the sampling distribution of d is 
quite accurate.  

Although the macro has been provided to yield 
80%, 90%, and 95% confidence intervals, the code 
may be modified easily to accommodate other levels 
of confidence. Further, one-sided confidence intervals 
may be obtained with this macro. Such intervals are 
used to provide confidence statements such as ‘we 
are 95% sure that the population effect size is at least 
0.678.’ Such modifications to the code simply require 
changing the fourth argument to the FIND_DELTA 
subroutine. For example, using arguments of .005 
and .995 will provide the endpoints of a 99% 
confidence interval.  

In addition, other effect sizes (besides the 
standardized mean difference) may be used, but this 
alteration will require more modification to the 
program code. Most effect sizes can be converted to 
noncentrality parameters, and such parameters can 
be used within the structure provided by the macro 
EFFECT_CI. For example, effect sizes that are often 
used in the context of multiple correlation analysis or 
multiple regression analysis are given by 
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These effect sizes are converted into noncentrality 
parameters for the F distribution, using 

( )2 1λ = + +num denf df df  

Using the program structure provided in EFFECT_CI, 
this noncentrality parameter may be used with the 
PROBF function to obtain confidence bands for this 
effect size. 

In summary, the use of effect sizes has grown in 
popularity in recent years (although such application 
remains far from universal).  Because effect sizes, in 
many instances, provide useful information to 
supplement more traditional inferential statistics, 
advocacy for their use is appropriate. Similarly, the 
use of interval estimates to complement point 
estimates and hypothesis tests is a worthy endeavor. 
This macro is provided to facilitate researchers’ 
calculation and use of confidence intervals for 
standardized mean differences. 
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